Unit 9 Day 11: Trigonometry (9.7) Law of Sines

In order to solve a non-right triangle you need to know one side and 2 other pieces of info.

Law of Sines

If triangle ABC has sides of length a, b, and c, then:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

* NOTE: Capital letters denote angles

lower case letters denote sides.

Very important to know this!

ROUNDING: Sides = 1 decimal places

Angles = Nearest whole #

Example

A surveyor wants to find the width of a river from a particular point on the shortline for construction of a new bridge. The surveyor's measurements are shown. How wide is the river?

Example

Find the length c, given that A=94, C=67, and b=25.

19=B

$$CSin19 = 258in67$$
 $C = 258in67$
 $Sin19$

Example

Find the measure of angle P given that Q=127, q=63, and p=42.

$$8 \text{inP} = 8 \text{im} 127$$
 $638 \text{inP} = 428 \text{im} 127$
 $8 \text{inP} = \frac{428 \text{im} 127}{63}$
 $P = 8 \text{in} \left(\frac{428 \text{im} 127}{63}\right)$
 $P = 32$

Example

Sketch ABC, then find all angle measures and side lengths. B=56, C=84, c=15

$$\alpha = \frac{15\sin 40}{\sin 40}$$

$$\alpha = \frac{15\sin 40}{\sin 44}$$

$$\alpha = 9.7$$

Remember how I said SSA was a special case?

With this given info. you can have 1 triangle, 2 triangles or no triangle at all.

This only is a possibility if one of the sides that is given is the same letter as the angle that is given.

Possible Triangles in the SSA Case

Consider a triangle in which you are given a, b, and A. By fixing side b and angle A, you can sketch the possible positions of side a to figure out how many triangles can be formed. In the diagrams below, note that $h = b \sin A$.

Steps to determine # of triangles.

- 1. Is it SSA?
- if yes, continue
- -if no, one triangle
- 2. Is the side across from the given angle shorter than the second side?
- if yes, continue
- -if no, one triangle
- 3. Find the height h=xsiny

where y=given angle x=second side

- 4. Is the side across from the given angle greater than h?
- -if yes, 2 triangles
- -if no , no triangle

Example

Determine if there is one triangle, two triangles or no triangle.

A=62, a=10, b=12

Conclusion: NO A

Example

Determine if there is one triangle, two triangles or no triangle.

$$A=54$$
, $\alpha=6$, $b=7$

Example

Determine if there is one triangle, two triangles or no triangle.

CONCINSION: ONE &

Example

Determine if there is one triangle, two triangles or no triangle.

$$3h = 135 \text{ m} \cdot 105$$
 $h = 12.6$

CONCIUSION: NO \triangle

HW:

13.5 Law of Sines WS

Mini Quiz:

Wednesday 3/11 Thursday 3/12